A final synopsis on the topic

SYNTHESIS AND CHARACTERIZATION OF BIOLOGICALLY
ACTIVE NOVEL ORGANIC MOLECULES

Submitted to the

DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY,
AURANGABAD
For the degree of

DOCTOR OF PHILOSOPHY IN CHEMISTRY

Submitted by

SMT. JAISHREE L. SOMWANSHI
SHRI MADHAVRAO PATIL MAHAVIDYALAYA MURUM
DIST. OSMABABAD

UNDER THE GUIDANCE OF

DR. N.D.SHINDE
RESEARCH GUIDE IN CHEMISTRY
PRINCIPAL
SHRI CHATTRAPATI SHIVAJI COLLEGE OMERGA
DIST. OSMANABAD

The thesis consists of five chapters, the description of each chapter is as follows.

Chapter 1: Introduction

The present work entitled “SYNTHESIS & CHARACTERIZATION OF BIOLOGICALLY ACTIVE NOVEL ORGANIC MOLECULES” illustrate the synthesis of different biologically active organic molecules ranging from different aryl and hetero aryl compounds.

Keeping in view the importance of these organic molecules, we have planned the synthesis of a series of compounds containing biologically important pharmacophores, in addition all the synthesized compounds will be screened for their antibacterial activities, and few compounds will also screened for their anti-inflammatory and analgesic activities. Our present studies aims to develop certain organic molecules of sciff’s bases, quinolines, isoquinolines and β-Amino carbonyl compounds family.

Compounds containing azomethine group (-C=N-) in the structure are known as sciff’s bases, which are usually synthesized by the condensation of primary amines and active carbonyl groups. sciff’s bases are important class of compounds in medicinal and pharmaceutical field.

One Interesting role of sciff’s bases is as intermediate in the biologically important transamination reaction. Transamination is the process whereby an amino group is transferred from one molecule to another. In Living systems the amino group of an amino acid is transferred to the carbonyl group of another molecule. The sequence promoted by enzyme called trainees enzyme. The new amino acids are formed by this method. sciff’s bases constitute one of the most active class of compound possessing diversified biological applications.

They show biological applications one including antibacterial, antifungal, antitumor activity, antioxidant, anti-inflammatory, antihypertensive, anti-HIV, anti filarial, anticonvulsant, herbicidal, insecticidal, schistosomicidal and anthelmintic activities. sciff’s bases and their complexes have a variety of application in biological, clinical and analytical fields.

Tetrahydroquinoline derivatives are an important class of compounds in the field of pharmaceuticals and exhibit a wide spectrum of biological activities, including psychotropic
anti-inflammatory and estrogenic behaviour. In particular, isoquinolonic acids are found to possess a wide range of pharmacological activities18. Isoquinolonic acids are useful precursors for the total synthesis of naturally occurring phenanthridine alkaloids19 such as nitidine chloride (1), decumbenine B (2), corynoline (3), oxocorynoline (4) and epicorynoline (5) as well as indenoisoquinolines20 possessing significant antitumor activity. Thus, the syntheses of these heterocyclic compounds are very important.

\begin{itemize}
 \item \textbf{nitidine chloride (1)}
 \item \textbf{decumbenine B (2)}
 \item \textbf{(+)- corynoline (3)}
 \item \textbf{oxocorynoline (4)}
 \item \textbf{epicorynoline (5)}
\end{itemize}

Tetrahydroisoquinolonic acid derivatives have attracted the attention of synthetic organic chemists due to their potential activity in the field of pharmaceuticals, and exhibit a wide spectrum of biological activities including psychotropic, anti-allergenic, anti-inflammatory and estrogenic behaviour21. Pyrano- and furanoquinoline derivatives belongs to an important class of natural products and exhibit a wide spectrum of biological activities such as anti allergic, anti inflammatory, antipyretic, analgesic, anti platelet, psychotropic and estrogenic activity22. Many biologically active alkaloids like Simulenoline (6), Huajiasimuline (7), Zanthodioline (8), Flindersine (9), Teclealbine (10) and Flindersiamine (11) contain pyranoquinoline and furanoquinoline moiety22d-e,23. Hence, the synthesis of pyranoquinoline and furanoquinoline derivatives is of much current importance.
β-amino carbonyl compounds are versatile intermediates for the synthesis of various complex natural products, antibiotics, β-amino alcohols and chiral auxiliaries. The Aza-Michael reaction was used in the synthesis of various structurally complex piperidine and quinolizidine natural products, like (-)-Lasubine II (12), (+)-Myrtine (13), (-)-Epimyrtine (14), (+)-Hyperaspine (15), (+)-Sedamine (16).

β-amino derivatives are attractive for their use as synthetic intermediates of anticancer agents, antibiotics and other drugs.
Chapter 2:-Synthesis of sciff’s bases.

This chapter consists of different synthetic schemes of some novel sciff’s bases with their experimental procedures and characterization. Here in this section we have synthesized new sciff’s bases of different drug molecules. We have prepared these compounds by refluxing trimethoprime, cefadroxil and pyrimithiamine with different aldehydes in for appropriate time periods (Scheme 1).

It consists of screening of the newly synthesized organic molecules. We are tried to screened these compounds for antibacterial activity, anti-inflammatory activity. It was observed that some of the newly synthesized compounds i.e Schiff bases of trimethoprime, cefadroxil and pyrimithiamine are found to be effective against microorganism.

Scheme 1

\[
\text{Reflux} \quad \text{EtOH} \quad \begin{array}{c}
\text{+} \quad \text{NH}_2 \\
\text{O} \\
\text{H} \\
\text{O} \\
\text{MeO} \\
\text{OMe} \\
\text{H} \\
\text{H} \\
\text{Me} \\
\text{Ph}
\end{array}
\]

\[\text{(-)-lasubine II (12)} \quad \text{(+)-myrtine (13)}\]

\[\text{(-)-Epimyrtine (14)} \quad \text{(+)-hyperaspine (15)} \quad \text{(+)-Sedamine (16)}\]
Trimethoprim
Pyrimethamine
Cefadroxil

\[
\text{Cefadroxil} \quad \text{(Diagram)}
\]
Chapter 3: Synthesis of cis-isooquinolonic acids.

This chapter deals with the per chloric acid-silica catalyzed synthesis of cis-isooquinolonic acids. Generally, the tetrahydroisoquinolonic acid derivatives are prepared by the condensation of imines with cyclic carboxylic anhydrides26.

Combinatorial chemistry is now routinely applied to find novel biologically active compounds. In this context, multicomponent reactions (MCRs) are powerful tools in the modern drug-discovery process in terms of finding leads and optimization27. The range of easily accessible and functionalized small hetero cycles is rather limited. The development of new, rapid, and robust routes toward focused libraries of such hetero cycles is therefore of great importance.

In this chapter synthesis of variety of cis-isooquinolonic acids using catalytic amount of per chloric acid-silica28 was described. The treatment of homophthalic anhydride (1), benzaldehyde (2) and aniline (3) in acetonitrile in presence of per chloric acid-silica at ambient temperature afforded the corresponding cis-isooquinolonic acid derivative (4). (Scheme 2).

\[
\begin{array}{ccc}
\text{O} & \text{O} & \text{ArCHO} \\
\text{O} & \text{O} & \text{RNH}_2 \\
\end{array} \rightarrow \text{HClO}_4\text{-SiO}_2 \xrightarrow{\text{CH}_3\text{CN, r.t.}} \begin{array}{c}
\text{N} \\
\text{H} \\
\text{Ar} \\
\text{COOH} \\
\end{array}
\]

Scheme 2

Similarly, several aryl imines (generated in situ) reacted well with homophthalic anhydride to give the corresponding isoquinolonic acids in good yields. In all cases, the reactions proceeded smoothly at room temperature under mild conditions. The reactions were clean and the products were obtained in good yields and with high diastereo selectivity as determined from the NMR spectrum of the crude product. In all reactions, the product was obtained as a cis-diastereomer.

Here, we described a simple, mild and efficient protocol for the synthesis of cis-isooquinolonic acids via three-component one-pot condensation of aldehydes, amines and cyclic enol ethers using per chloric acid-silica as catalyst.
Table 2: perchloric acid-silica catalyzed preparation of cis-isoquinolonic acids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Homophthalic anhydride</th>
<th>Aldehyde</th>
<th>Amine</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>ClCl</td>
<td>PhCHO</td>
<td>ClNH₂</td>
<td>ClPhClCHO</td>
<td>6.2</td>
<td>80</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>PhCHO</td>
<td>NH₂</td>
<td>ClPhCHO</td>
<td>6.1</td>
<td>84</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>PhCHO</td>
<td>ClNH₂</td>
<td>ClPhCHO</td>
<td>6.4</td>
<td>81</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>PhCHO</td>
<td>NH₂</td>
<td>ClPhCHO</td>
<td>7.0</td>
<td>79</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>PhCHO</td>
<td>MeOClNH₂</td>
<td>ClMeOClPhCHO</td>
<td>6.2</td>
<td>82</td>
</tr>
<tr>
<td>f</td>
<td>-</td>
<td>PhCHO</td>
<td>NH₂</td>
<td>ClNH₂</td>
<td>6.0</td>
<td>85</td>
</tr>
<tr>
<td>g</td>
<td>-</td>
<td>PhCHO</td>
<td>ClNH₂</td>
<td>ClPhCHO</td>
<td>6.0</td>
<td>80</td>
</tr>
<tr>
<td>h</td>
<td>-</td>
<td>PhCHO</td>
<td>MeOClNH₂</td>
<td>ClMeOClPhCHO</td>
<td>7.5</td>
<td>74</td>
</tr>
<tr>
<td>i</td>
<td>-</td>
<td>MeOClPhCHO</td>
<td>NH₂</td>
<td>ClMeOClPhCHO</td>
<td>6.0</td>
<td>90</td>
</tr>
<tr>
<td>j</td>
<td>-</td>
<td>MeOClPhCHO</td>
<td>NH₂</td>
<td>ClMeOClPhCHO</td>
<td>6.4</td>
<td>87</td>
</tr>
<tr>
<td>k</td>
<td>-</td>
<td>MeOClPhCHO</td>
<td>NH₂</td>
<td>ClMeOClPhCHO</td>
<td>6.0</td>
<td>90</td>
</tr>
<tr>
<td>l</td>
<td>-</td>
<td>MeOClPhCHO</td>
<td>NH₂</td>
<td>ClMeOClPhCHO</td>
<td>5.5</td>
<td>85</td>
</tr>
</tbody>
</table>
Chapter 4: Glycerol catalyzed synthesis of tetra hydro pyrano and furano quinolines.

This Chapter describes the of tetra hydro pyrano and furano quinolines catalysed by Glycerol. In recent years, Glycerol has emerged as an economically and secure solvent for organic synthesis. Glycerol is main by-product in biodiesel production and available plenty at low cost has gain importance in recent years as a reusable reaction medium for organic transformations 29.

Generally the pyranoquinoline and furanoquinoline derivatives are prepared by aza-Diels-Alder reactions 30 of imines (derived from various aromatic amines and aromatic aldehydes) with different dienophiles like 3, 4-dihydro-2H-pyran and 2, 3-dihydrofuran in the presence of different acid catalysts. However, many of these reactions cannot be carried out in a one-pot operation with carbonyl compound, amine and enol ether because the amines and water that exist during imine formation can decompose or deactivate the Lewis acids.

The treatment of anilines 1 and benzaldehydes 2 with 2, 3-dihydrofuran (DHF) in the presence of Glycerol at 90°C afforded the corresponding furanoquinolines 3 in high yields (scheme 3).

![Scheme 3](image-url)

In a similar manner, treatment of anilines 1 and benzaldehydes 2 with 3, 4-dihydro- 2H-pyran (DHP) in the presence of Glycerol afforded the corresponding pyranoquinolines 4 and 5 in high yield (Scheme 4).

![Scheme 4](image-url)

Several aldimines (formed in situ from aromatic aldehydes and anilines in presence of glycerol reacted smoothly with 2, 3-dihydrofuran and 3, 4-dihydro-2H-pyran to afford the
Table 3: Glycerol promoted synthesis of pyrano, furanoquinolines

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Ar</th>
<th>Olefin</th>
<th>Reaction time (h)</th>
<th>Yield (%)</th>
<th>endo:exo</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>H</td>
<td>C₆H₅</td>
<td></td>
<td>2.5</td>
<td>91</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>3.5-(MeO)₂</td>
<td>4-FC₆H₄</td>
<td></td>
<td>3.0</td>
<td>87</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>4-MeOC₆H₄</td>
<td></td>
<td>2.5</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>4-Me</td>
<td>4-ClC₆H₄</td>
<td></td>
<td>3.0</td>
<td>85</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>4-MeO</td>
<td>4-FC₆H₄</td>
<td></td>
<td>3.5</td>
<td>82</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>H</td>
<td>4-FC₆H₄</td>
<td></td>
<td>3.0</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>H</td>
<td>C₆H₅</td>
<td></td>
<td>2.5</td>
<td>90</td>
<td>92:8</td>
</tr>
<tr>
<td>h</td>
<td>4-MeO</td>
<td>C₆H₅</td>
<td></td>
<td>3.0</td>
<td>90</td>
<td>86:14</td>
</tr>
<tr>
<td>i</td>
<td>2-Me</td>
<td>C₆H₅</td>
<td></td>
<td>2.5</td>
<td>87</td>
<td>85:15</td>
</tr>
<tr>
<td>j</td>
<td>4-F</td>
<td>C₆H₅</td>
<td></td>
<td>3.0</td>
<td>86</td>
<td>85:15</td>
</tr>
<tr>
<td>k</td>
<td>4-Me</td>
<td>C₆H₅</td>
<td></td>
<td>3.0</td>
<td>86</td>
<td>87:13</td>
</tr>
<tr>
<td>l</td>
<td>1-Naphthyl</td>
<td>C₆H₅</td>
<td></td>
<td>3.5</td>
<td>82</td>
<td>82:18</td>
</tr>
<tr>
<td>m</td>
<td>1-Naphthyl</td>
<td>4-FC₆H₄</td>
<td></td>
<td>4.0</td>
<td>81</td>
<td>80:20</td>
</tr>
<tr>
<td>n</td>
<td>H</td>
<td>4-ClC₆H₄</td>
<td></td>
<td>3.8</td>
<td>85</td>
<td>86:14</td>
</tr>
</tbody>
</table>

a: Isolated and unoptimized yields
b: Cis/trans-isomers were separated by column chromatography
Corresponding furano- and pyranoquinolines in good to excellent yields. Here, we described a simple, mild and efficient protocol for the synthesis of trans-fused furano- and pyranoquinolines via three-component one-pot Aza Diels-Alder reaction of aldehydes, amines and cyclic enol ethers using Glycerol.

Chapter 5:- Synthesis of \(\beta \)-Amino carbonyl compounds.

The Aza Michael reaction is widely recognized as one of the most important carbon-nitrogen bond forming reactions in organic synthesis\(^{31}\). In general, this transformation is a heteroatom (nitrogen) nucleophilic (donor) addition to a \(\beta \)-carbon of electron-poor alkenes (acceptor) giving a stabilized carbanion intermediate, which after protonation with another electrophile furnishes the final addition product. The obtained \(\beta \)-amino ketones are versatile intermediates for the synthesis of various complex natural products, antibiotics, \(\beta \)-amino alcohols and chiral auxiliaries.\(^{32}\)

These reactions are usually carried out under basic or acidic conditions. However, to avoid the side reactions, encountered in the presence of strong acid or base, a number of alternative methods have been developed. In the past years Lewis acids such as metal halides, metal triflates and microwave accelerated reactions have been shown as the best promoters for these addition reactions, especially concerning the simplicity, economy and atom efficiency aspects.

The conjugate addition of benzyl amine 1 to ethyl acrylate 2 in dichloromethane was carried out in presence of silver triflate\(^{33}\) to afford ethyl \((N\text{-benzyl amino})\)-propionate 3 in 96% yield (Scheme 5).

\[
\text{BnNH}_2 + \begin{array}{c}
\text{EtO} \\
\text{C}
\end{array} \rightarrow \begin{array}{c}
\text{AgOTf} \\
\text{DCM}
\end{array} \text{Bn}\begin{array}{c}
\text{N} \\
\text{O}
\end{array}\text{Et}
\]

Scheme 5

Encouraged by the results obtained with benzyl amine, we turned our attention to aliphatic amines, heterocyclic amines and aromatic amines, with various \(\alpha, \beta \)-ethylenic compounds. The various \(\alpha, \beta \)-ethylenic compounds, such as acrylates, acrylonitrile, alkyl vinyl ketones underwent 1, 4-addition with a variety of amine nucleophiles to furnish the corresponding \(\beta \)-amino
compounds. Here, we have demonstrated an efficient and improved protocol for the conjugate addition of various amines to electron-deficient olefins to produce the β-amino compounds using silver triflate.

Table 4: Silver triflate catalysed aza Michael addition.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nucleophile</th>
<th>Olefin</th>
<th>Product</th>
<th>Reaction Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Ph–NH₂</td>
<td>OEt–</td>
<td>Ph–NH₂–OEt</td>
<td>2.2</td>
<td>95</td>
</tr>
<tr>
<td>b.</td>
<td>Ph–NH₂</td>
<td>OEt–</td>
<td>Ph–NH₂–OEt</td>
<td>2.8</td>
<td>93</td>
</tr>
<tr>
<td>c.</td>
<td>O–NH</td>
<td>OEt–</td>
<td>O–NH–OEt</td>
<td>3.0</td>
<td>90</td>
</tr>
<tr>
<td>d.</td>
<td>H–NH</td>
<td>OEt–</td>
<td>H–NH–OEt</td>
<td>3.2</td>
<td>92</td>
</tr>
<tr>
<td>e.</td>
<td>PH–NH₂</td>
<td>OEt–</td>
<td>PH–NH₂–OEt</td>
<td>1.8</td>
<td>95</td>
</tr>
<tr>
<td>f.</td>
<td>CH₃–NH₂</td>
<td>OEt–</td>
<td>CH₃–NH₂–OEt</td>
<td>2.5</td>
<td>88</td>
</tr>
<tr>
<td>g.</td>
<td>Ph–NH₂</td>
<td>OEt–</td>
<td>Ph–NH₂–OEt</td>
<td>1.8</td>
<td>90</td>
</tr>
<tr>
<td>h.</td>
<td>H–NH</td>
<td>OEt–</td>
<td>H–NH–OEt</td>
<td>2.5</td>
<td>88</td>
</tr>
<tr>
<td>i.</td>
<td>Ph–NH₂</td>
<td>OEt–</td>
<td>Ph–NH₂–OEt</td>
<td>2.6</td>
<td>90</td>
</tr>
<tr>
<td>j.</td>
<td>OEt</td>
<td>OEt</td>
<td>(\text{Ph} \text{N} \text{H} \text{CH}_3)</td>
<td>3.0</td>
<td>92</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>k.</td>
<td>O</td>
<td>O</td>
<td>(\text{Ph} \text{NH}_2)</td>
<td>2.8</td>
<td>89</td>
</tr>
<tr>
<td>l.</td>
<td>O</td>
<td>O</td>
<td>(\text{Ph} \text{NH}_2)</td>
<td>3.2</td>
<td>85</td>
</tr>
<tr>
<td>m.</td>
<td>NO_2</td>
<td>NO_2</td>
<td></td>
<td>2.8</td>
<td>86</td>
</tr>
</tbody>
</table>

Bibliography:

Dr. N.D.Shinde
(Research Guide)

Jaishree L. Somwanshi
(Research Student)