Introduction

The work included in this thesis entitled “The Ecology and Behavior of Indian Swift, *Apus affinis* (Gray, 1830)” has been divided into five chapters. Chapter-I contains a review of the studies conducted on behavioral ecology of birds in general and species of swifts in particular. Chapter-II concerns with the communal roosting behavior in house swift, *Apus affinis* with reference to environment, season and longitudinal time. Chapter-III deals with the circadian variation in nest visitation activity of the colony of house swift, *Apus affinis*, during long and short days. Chapter-IV contains the nesting behavior of house swift, *Apus affinis*. Chapter-V deals with the summary of each of the previous chapters. This also includes conclusions drawn and recommendations emanated based upon the findings included in this doctoral dissertation.

Chapter-I: Review of literature

The house swift, *Apus affinis*, study model, is a small sized, quick flier, insectivorous and colonial nester bird. It is well known for its speediness in the flight. Swifts species are distributed all over the world (Lee *et al.* 1996; Martin and Mead 2003). The humming birds are considered as the ancestors of the swifts (Lee *et al.* 1996; Thomassen *et al.* 2005; Ksepka *et al.* 2013). Swifts feed upon different groups of arthropods, such as small flying insects, flies, mosquitoes, midges, flying ants, termites, dragonflies, grasshoppers, spiders and moths (Glick 1939; Lee *et al.* 1996). The density of the aerial insectivorous birds is directly proportional to the amount of the airborne insects (Chapman *et al.* 2003). Swifts exploit a wide variety of nesting sites and nesting materials. Many species of swifts use urban/suburban territory for nesting, while others prefer natural sites (Mills *et al.* 1989; Blair 1996; Clergeau *et al.* 1998; Gering and Blair 1999). Many communally roosting birds exhibit variability in their exit and entry timings (roosting behavior) or diurnal activity patterns; however, the adaptive function of this social behavior has not yet been studied adequately (Richner and Heeb 1995; Beauchamp 1999; Janicke and Chakarov 2007). The roosting behavior of birds characterizes rest at night and activity during the day (Khan and Zarreen 2010). The decrease in thermoregulation demands, enhancement in foraging competence and reduction in predation risk are three major advantages of communally roosting birds (Beauchamp 1999). Local environmental conditions influence activity time budget in many communal roosting species (Eiserer 1984; Elkins 1988). Circadian ($\tau = 24$ h) and circannual ($\tau = 365.25$ d) rhythms in
different types of behavior have been reported comprehensively in birds (Avey et al. 2011; Sánchez-García et al. 2012; Zárybnická et al. 2012; Wang et al. 2012; Aronov and Fee 2012; Mueller et al. 2012; Stuber et al. 2013; Steiger et al. 2013; Malik et al. 2014; Shaffer et al. 2014). The activity schedule of the birds apart from the photoperiod is customized by the temperature and food convenience in the surrounding (Hahn et al. 1997; Dawson 2008).

This thesis would help to decipher various characteristics of the behavioral ecology and will further append our understanding about the constraints the species is facing locally and globally. The anticipated result of the studies that have been designed in this thesis might help in demarcating strategies for managing this species.

Chapter-II: Communal roosting behavior in house swift, *Apus affinis*: environment, season and longitudinal time

*(Part accepted in *Journal of Ravishankar University-B*, 2014)*

This chapter deals with the study of temporal pattern of roosting behavior of house swift along longitudinal time scale. The study was conducted over a longitudinal time scale consisting of 24 consecutive months with effect from August 2009. It is evident from the results that in an average, the first/last bird exited/entered from/to their roosts about half an hour before/after from the sunrise/sunset time, respectively, during the entire period of study. Exit time, entry time and activity period were found to be significantly associated with sunrise time, sunset time, temperature and humidity, although the evening light intensity was significantly associated with entry time and activity period. The factor ‘season’ produced significant effect on the exit time, entry time and activity period. The birds significantly exited later during winter than rainy and summer seasons with respect to sunrise time. Consequently they entered in to the roost significantly earlier during the winter, followed by rainy and subsequently during the summer with respect to sunset time. The activity period was the shortest in winter and was the longest in summer. A statistically significant circannual rhythm in activity period was obtained with the peak on June 28 with a spread between 25th June and 2nd July.

On the basis of the present findings we can conclude that environmental factors, *viz.*, sunrise time, sunset time, temperature, humidity and light intensity are likely to produce statistically significant effect on the roosting behavior (exit & entry timings, activity period) of the house swift, *Apus affinis*. The sunset appears to be one of the most
Summary of the Thesis

Dominant time cues for the activity period in house swift, *Apus affinis*, especially because entry time (vs. exit time) was found to be significantly associated with all the independent variables considered in the present study. The roosting behavior also exhibited seasonal variations.

Separation of seasonal dataset in house swift, *Apus affinis*, exhibited distinct identity with respect to temporal variables. The PCA analysis was highly significant at all levels. In general there is segregation of variables along the temporal scale; however, there is a close association between the variables obtained during summer and rainy seasons (Figure 2.1). We are not in a position to compare the current PCA data as we did not find any comparable peer studies. The PCA data strongly complements the findings on activity duration as function of season.

![PCA Plot](image)

Figure 2.1 Simple PCA on the activity of *Apus affinis* based on nine variables during all seasons (rainy, winter and summer), all sites, and all data at a time

\[F_1 = 58.85\% \]
\[F_2 = 14.11\% \]
\[p < 0.001 \]
Chapter-III: Circadian variation in nest visitation activity of the colony of house swift, *Apus affinis*, during long and short days

We studied the nest visitation activity pattern (exit and entry) of the house swift, *Apus affinis*, for two consecutive days each during long days in May, June and July, 2011 and during short days in December, 2011; January & February, 2012. Results demonstrate that a bimodal pattern in daytime nest visitation with reference to frequency (with raw data/log-transformed/total frequency) and activity of birds that exited and entered from/to roost was observed during long days (Figure 3.1 a and b), but multimodality was found in short days (Figure 3.2 a and b). The modality pattern in daytime nest visitation (exit and entry) was more wide and distinct in long days than that of short days.

Figure 3.1 Bimodality pattern in daytime nest visitation activity rhythm based on raw data for exit (a) and entry (b) during long days
Figure 3.2 Multimodality pattern in daytime nest visitation activity rhythm based on raw data for exit (a) and entry (b) during short days

The factor ‘time of the day’ produced significant effect on daytime nest visitation of birds in respect of frequency of birds. Duncan’s multiple-range test depicted that the frequency of birds was the maximum between 05:00 and 07:00 h followed by 17:00-19:00 during long days. During short days, the number of birds’ visit was significantly higher at 11:00-13:00 h and 17:00-19:00 as compared to other time points of the day. The frequency of birds was always significantly higher during long day (vs. short day) in all the times of the day excluding 11:00-13:00. The factors ‘photoperiod’ and ‘time of the
day’ produced significant effects on daytime nest visitation with reference to frequency of birds. A statistically significant circadian rhythm was validated in daytime nest visitation activity of house swift, *Apus affinis*, in all studied months and at group level during long days. Similarly, a significant circadian rhythm in daytime nest visitation activity of birds was also found during all studied short day months for both exit and entry, excluding December for entry. The harmonic means of Mesors, amplitudes and acrophases obtained separately at 24-h and 12-h windows were computed for both photoperiods. The prominent period (τ) of the daytime nest visitation activity was 24 h for both exit and entry in June, July and for pooled data during long day. However, the prominent period was 12 h in the month of May. During short days, the prominent period (τ) of the daytime nest visitation activity was 24 h for both exit and entry in December, January and February and for pooled data. A statistically significant difference in Mesors of daytime nest visitation activity was reported for both exit and entry between long and short days. The daytime nest visitation activity was higher during long days as compared to short days. A significant difference was reported in amplitude of daytime nest visitation activity between long and short days at 24 h and 12 h for entry of birds. Further, the harmonic means of the amplitude of the daytime nest visitation activity rhythm during long days were significantly higher for both exit and entry as compared to short days. A significant difference was validated in the acrophase of daytime nest visitation activity rhythm of birds between long day and short day for exit at 24 h, 12 h and for harmonic mean.

We conclude that daily variations in the daytime nest visitation activity of house swift, *Apus affinis*, is somewhat intriguing. The house swift, *Apus affinis* showed bimodality in daytime nest visitation pattern with reference to frequency and activity of birds which characterized by the maximum activity in the morning and evening in long days. The pattern of bimodality disappeared in winter; rather a feeble multimodality emerged. The circadian daytime nest visitation activity pattern may vary as function of ‘photoperiod’ and ‘time of the day’. The birds were more active during long days. It is also equally likely that high temperature in the noon hours during summer stimulates the birds to minimize their activity in scorching summer sun.

Chapter-IV: Nesting behavior of the house swift, *Apus affinis*

This chapter concerns with the nest structure, nest morphometry, nest composition, nest construction period and nest visitation rate at different stages of nest construction. To
examine nest structure, morphometry and composition; eighteen nests of house swift, *Apus affinis*, were randomly collected from a cluster located at the site of the study. Morphometric measurements, such as weight, length, breadth, depth, entrance diameter and volume of each nest were carried out. Result showed that a cluster of overlapping nests of bird appeared like a big untidy mass. The nests were cup shaped with independent spherical-shaped entrance for exit and entry. The outer and inner surfaces of the nests were completely cushioned with feathers. The feathers were observed to be intertwined with each other tightly providing rigidity and strength to the nests. The nest was made up of feathers, grasses, plastic, soil, thread, dead & green leaves, and scraps of paper. All nesting materials were glued together with the help of saliva. The average nest construction duration of these birds was noted to be 48.5 ± 1.22 days. The nest construction period was found to be between late May and end of July. A significant difference was validated in the adult’s visitation rate to the nest at different stages (i.e. initial, middle and final) during the nest construction tenure. The adult’s visitation rate in the nest was significantly higher during middle stage and final stage as compared to the initial stage.

In conclusion, the bird’s first preference to feather as nesting material might have been evolved to ensure proper insulation for the bird itself, its eggs and nestlings. The nest visitation rate varied as function of stages of nest construction period. The higher nest visitation rate during middle and final stages could be on account of breeding period of the bird that was imminent. Nesting behavior has been suspected to be heritable in oviparous animals. In this species the choice for feathers as the dominant nesting material could therefore be instinctive. However, it could be an expression of learned behavior as well. Therefore, the choice element – the predilection for choosing feathers for nest construction, could be passing from one generation to the other through these mechanisms. The study of nest building behavior has important conservation implications. Thus, more comprehensive investigation on these aspects is desirable.

General Conclusion and Recommendation

Swifts play a key role in the scavenging of insect pests (Chantler 1999; Chantler and Driessens 2000; Collins 2001). Therefore, the behavioral studies might be used as reference resources for developing strategies for conservation of economically important house swift, *Apus affinis* (Gray, 1830). There is only general information without any quantitative specification known for the behavior of house swift, *Apus affinis*, in
Summary of the Thesis

Southeast region of India. The finding of this study might also help to elucidate the geographic patterns of roosting/nesting behavior. Therefore, further studies should include other behavioral measures in addition to the behavioral variables included in this thesis. Results of the present study will certainly advance our knowledge on the behavioral ecology of the species. Eventually that will help to develop strategies in managing the species and knowing constrains the species is facing.

References

Aronov D and Fee MS (2012). Natural changes in brain temperature underlie variations in Song Tempo during a mating behavior. Public Library of Science One 7(10): e47856.

Summary of the Thesis

Temporal Pattern in Roosting Behavior of the House Swift, *Apus affinis* with Reference to Environmental Factors – a Longitudinal Study

Shrutika Kankariya, Arati Singh, Atanu Kumar Pati and Arti Parganiah*

School of Life Sciences, Pr. Ravishankar Shukla University, Raipur – 492010, Chhattisgarh, India

*Corresponding Author: arti.parganiah@gmail.com

[Received 28 March 2014; revised version received 9 April 2014; accepted 13 April 2014]

Abstract. There is complete lack of information on roosting behavior of the house swift, *Apus affinis* native to Chhattisgarh. Therefore, we studied the roosting behavior (exit and entry patterns from/to its roosting site) of the house swift. Attempts were also made to ascertain the modulatory role of environmental factors. We monitored the exit and entry timings of the house swift in the roosting site located on the busiest commercial area of Raipur city, India, for eight consecutive days, every month over a period of two years. The exit and entry timings showed positive relationship with the sunrise and sunset, respectively. The house swift exited later and entered earlier in winter as compared with summer and monsoon seasons. A significant negative correlation between exit time and morning ambient temperature, and positive correlation between entry time and evening temperature was witnessed. Unlike exit time, the entry time was negatively associated with the humidity. The entry time was also associated with light intensity. In summary, we conclude that various environmental factors, viz., sunrise time, sunset time, temperature, humidity and light intensity are likely to produce statistically significant effect on roosting behavior of the house swift. This study is, however, inadequate to answer the following questions: (1) how the first bird of the colony determines that it is the time to fly out? (2) Is it the same individual that flies out first daily? Nonetheless, the findings of the present study may have important bearings on the safety of civil and military flights.

Keywords: Exit & entry timings, longitudinal study phase angle, seasonal variation, sunrise, sunset

Introduction

A number of research papers have been published describing the roosting behavior of avian species, such as migratory common swifts (*Apus apus*) and European alpine swifts (*A. melba*) (Koskimies, 1950; Lack and Lack, 1952; Church, 1956; Lack, 1956), starlings (*Sturnus vulgaris*) (Davis, 1955; Davis and Lussenhop, 1970), house swift (*A. affinis*) (Razack and Naik, 1965), herring gull (*Larus argentatus*) (Schreiber, 1967), Canada geese (*Branta canadensis*) (Raveling et al., 1972), black-capped chickadees (*Parus atricapillus*) (Kessel, 1976), rooks (*Corvus frugilegus*) (Swingland, 1976), domestic fowl (*Gallus gallus domesticus*) (Wood-Gush et al., 1978; Kent et al., 1996), wintering black ducks (*Anas rubripes*) (Brodsky and Weatherhead, 1984), magpies (*Pica pica*) (Reebs, 1986, 1987), common myna (*Acridotheres tristis*) and white-vented myna (*A. javanicus*) (Kang and Yeo, 1993; Gupta and Goel, 1994; Jayson and Mathew, 1995), house crow (*C. splendens*) (Peh, 2002) and common ravens (*C. corax*) (Janicke and Chakarov, 2007). In about fifty percent of these papers, roosting behavior has been studied in relation to geophysical variables. However, there is not even a single report on temporal pattern of roosting behavior of house swift along longitudinal time scale.

House swift is a small sized, quick flier, insectivorous and colonial nester bird. It is renowned for its speediness in the flight. It belongs to the Order - Apodiformes and Family - Apodidae. Swifts species are dispersed all over the planet (Lee et al., 1996). The humming birds are considered as the predecessor for the swifts (Sibley and Ahlquist, 1990; Bleiweiss et al., 1994; Lee et al., 1996; Johansson et al., 2001, Livezey and Zusi, 2001; Mayr, 2002, 2003; Thomassen et al., 2005; Ksepka et al., 2013). House swift lives near the human habitation; sometimes in noisy or deafening downtown (Wotton et al., 2002). The major activity time of swifts is spent on aerial foraging (Church, 1956). Swift birds are also known as Layang Layang (which means kite, Malay name); because in most part of the day, they are airborne. Swifts cannot sit down wherever due to very skinny, small feet and some may even have difficulty taking flight again if they land on the ground (http://www.naturia.per.sg/buloh/birds/Apus_nipalensis.htm). The North American vaux’s swift (*Chaetura vaux*) during the reproductive phase build nests in large-sized tree trunks (Baldwin and Zaczkowski, 1963; Bull, 1991; Bull and Cooper, 1991); however, similar observations are not available for house swift.

The diet of swifts comprises of different groups of arthropods, such as small flying insects, flies, mosquitoes, midges, flying ants, termites, dragonflies, grasshoppers, spiders and moths (Glick, 1939; Lee et al., 1996). Normally the birds feed on
aerial bugs, while on flight, up to 300 m over the ground (Berland, 1935; Glick, 1939). The foraging region of airborne insectivorous birds extends over large area at the maximum altitude (Norberg, 1986; Warrick, 1998). The density of the aerial insectivorous birds is directly proportional to the amount of the airborne insects (Chapman et al., 2003). There is evidence to presume that the extinction of many aerial forager birds is due to non-availability of insects up in the air, urbanization, extensive use of pesticides and insecticides in fields (Brown, 1985; Bull, 1991; Bull and Hohmann, 1993).

Knowledge of the roosting behavior of the house swift is necessary in order to develop a long-term conservation strategy for the species. The rationale of our study was to explore temporal (daily and seasonal) variations in roosting behavior (exit and entry timings) of the house swift. In addition, we made an attempt to ascertain the relationship of various local geophysical factors, such as sunrise time, sunset time, temperature, humidity and light intensity with the exit and entry timings of the birds. We performed longitudinal study spread over a consecutive span of 24 months.

Materials and methods

Study site

We located a large colony (Figure 1a) of the house swift (*A. affinis*) (Figure 1b) in one of the old buildings in the congested noisy downtown of Malviya Road (climate - tropical; location 21.25° N; 81.63° E), Raipur, Chhattisgarh, India. We chose the location as the study site. The birds of the colony construct their shallow saucer or cup-shaped nests on the roof approximately 4.7 meter above the ground level. A cluster of nests looks like a big untidy mass and consists of more than a hundred individual nests each with independent passage for exit/entry.

Data collection

The study was conducted over a longitudinal time scale consisting of 24 consecutive months with effect from August 2009. In each month, we recorded the timings of exit of the first bird from the roost and entry of the last bird to the roost over a period of eight consecutive days in two sessions (morning and evening) each day. Thus, the entire study consisted of 192 days and 384 sessions. In the morning, we reached the study site an hour before and in the evening we stayed till an hour after the local sunrise and sunset timings, respectively. The sunrise and sunset timings were obtained from the meteorological department of Raipur. We recorded the temperature and humidity (using Thermo-hygrometer, Pacer®, TH-402), and light intensity (using LX-101-Lux Meter, Davis Inotek Instruments, USA) during the entire period of the study.

![Figure 1](image1.png) ![Figure 1](image2.png)

Figure 1. Clusters of the nests of house swift (*A. affinis*) at the study site (a). Picture of a solitary house swift, *A. affinis* (b)
Statistical analysis

We stored the data in the form of a database in the MS Excel worksheet. We computed phase angles of the exit time of the first bird and entry time of the last bird with reference to sunrise and sunset timings, respectively. Correlation coefficients were computed between pairs of variables. We also identified three seasons, namely monsoon (July to October), winter (November to February) and summer (March to June) to determine the effect of season on the roosting behavior. The effect of the factor ‘season’ was validated using one-way ANOVA followed by Duncan’s multiple-range test. Data analyses were carried out with the help of SPSS (version 10) and COSTAT Software (CoHort Software; ver. 4.02, ©).

Results

Exit & entry timings and corresponding phase angle with reference to sunrise and sunset

Figures 2 and 3 demonstrate month wise exit time of the first bird from the roost and entry time of the last bird to the roost with reference to sunrise and sunset time, respectively, along a longitudinal time scale of 24 months. It is evident that birds always exited from their nest before sunrise and entered to the roost after sunset. In an average, the birds exited from their roosts about half an hour before the sunrise time, irrespective of season and month of the year (Table 1). The last bird entered to its roost about 20 minutes after the sunset time. The negative evening phase angle complements the preceding statement in that the entry time was always after the sunset, irrespective of season and month of the year (Table 1).

Table 1. Summary of exit and entry timings of the first and the last bird, respectively, from roosting colony of the house swift, A. affinis and corresponding phase angle (ψ) differences with reference to sunrise and sunset timings

<table>
<thead>
<tr>
<th>Season</th>
<th>Sunrise (h)</th>
<th>Exit (h)</th>
<th>Sunset (h)</th>
<th>Entry (h)</th>
<th>Morning ψ (min)</th>
<th>Evening ψ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monsoon</td>
<td>5.76 ± 0.02</td>
<td>5.28 ± 0.02</td>
<td>18.28 ± 0.05</td>
<td>18.63 ± 0.04</td>
<td>28.53 ± 0.97</td>
<td>-21.98 ± 1.52</td>
</tr>
<tr>
<td>Winter</td>
<td>6.51 ± 0.02</td>
<td>5.97 ± 0.04</td>
<td>17.62 ± 0.03</td>
<td>18.07 ± 0.03</td>
<td>29.37 ± 1.39</td>
<td>-22.99 ± 1.02</td>
</tr>
<tr>
<td>Summer</td>
<td>5.70 ± 0.04</td>
<td>5.27 ± 0.06</td>
<td>18.48 ± 0.03</td>
<td>18.85 ± 0.04</td>
<td>25.67 ± 1.43</td>
<td>-21.98 ± 0.93</td>
</tr>
<tr>
<td>Annual spread</td>
<td>0.81</td>
<td>0.70</td>
<td>0.86</td>
<td>0.78</td>
<td>3.70</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Further, the exit time, but not its corresponding phase angle, showed a statistically significant positive relationship with sunrise (Table 2). Both the entry time and corresponding evening phase angle showed statistically significant positive relationship with the sunset time (Table 2).

Exit & entry timings and corresponding phase angle with reference to ambient temperature

Exit time was significantly negatively correlated with the morning temperature, whereas entry time was positively associated with evening temperature. Further, both the corresponding phase angles exhibited insignificant relationship with the ambient temperature (Table 2).

Exit & entry timings and corresponding phase angle differences with reference to relative humidity

Exit time was positively and entry time was negatively correlated with the corresponding morning and evening humidity, respectively. Like ambient temperature, the morning and evening phase angles showed insignificant association with the respective values of humidity (Table 2).

Exit & entry timings and corresponding phase angle with reference to light intensity

Only entry time revealed a significant positive association with the evening light intensity, whereas exit time and both the corresponding phase angles showed insignificant correlation with light intensity (Table 2).

Effects of season

Results of ANOVA indicated that the factor ‘season’ produced a significant (P < 0.001) effect on exit time. The birds exited later during winter in terms of local time (exit time: 5.97 ± 0.04 hr; phase angle: 29.37 ± 1.39 min), but earlier during monsoon (exit time: 5.28 ± 0.024 hr; phase angle: 28.53 ± 0.97 min) and summer seasons (exit time: 5.27 ± 0.06 hr; phase angle: 25.67 ± 1.43 min) with respect to sunrise time (Table 1; Figure 4a).
Likewise, factor ‘season’ produced a statistically significant ($P < 0.001$) effect on entry time. The bird entered in the roost significantly earlier during the winter season (entry time: 18.07 ± 0.03 hr; phase angle: -22.99 ± 1.02 min), followed by monsoon (entry time: 18.63 ± 0.04 hr; phase angle: -21.98 ± 1.52 min) and subsequently during the summer season (entry time: 18.85 ± 0.04 hr; phase angle: -21.98 ± 0.93 min) with respect to sunset time (Table 1; Figure 4b).

However, the factor ‘season’ did not produce any significant effect on the corresponding morning and evening phase angles (Figure 5).

Table 2. Summary of correlation coefficients (r) between pairs of dependent and independent variables

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Dependent variables</th>
<th>n</th>
<th>r</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunrise time (h)</td>
<td>Exit time (h)</td>
<td>194</td>
<td>0.926</td>
<td>0.001</td>
</tr>
<tr>
<td>Sunrise time (h)</td>
<td>Morning phase angle, ψ (min)</td>
<td>194</td>
<td>-0.036</td>
<td>0.617</td>
</tr>
<tr>
<td>Sunset time (h)</td>
<td>Entry time (h)</td>
<td>194</td>
<td>0.923</td>
<td>0.001</td>
</tr>
<tr>
<td>Sunset time (h)</td>
<td>Evening phase angle, ψ (min)</td>
<td>194</td>
<td>0.246</td>
<td>0.001</td>
</tr>
<tr>
<td>Morning temperature ($^\circ$C)</td>
<td>Exit time (h)</td>
<td>194</td>
<td>-0.676</td>
<td>0.001</td>
</tr>
<tr>
<td>Morning temperature ($^\circ$C)</td>
<td>Morning phase angle, ψ (min)</td>
<td>194</td>
<td>-0.057</td>
<td>0.426</td>
</tr>
<tr>
<td>Evening temperature ($^\circ$C)</td>
<td>Entry time (h)</td>
<td>194</td>
<td>0.613</td>
<td>0.001</td>
</tr>
<tr>
<td>Evening temperature ($^\circ$C)</td>
<td>Evening phase angle, ψ (min)</td>
<td>194</td>
<td>0.129</td>
<td>0.072</td>
</tr>
<tr>
<td>Morning humidity (mmHg)</td>
<td>Exit time (h)</td>
<td>170</td>
<td>0.398</td>
<td>0.001</td>
</tr>
<tr>
<td>Morning humidity (mmHg)</td>
<td>Morning phase angle, ψ (min)</td>
<td>170</td>
<td>0.020</td>
<td>0.798</td>
</tr>
<tr>
<td>Evening humidity (mmHg)</td>
<td>Entry time (h)</td>
<td>170</td>
<td>-0.393</td>
<td>0.001</td>
</tr>
<tr>
<td>Evening humidity (mmHg)</td>
<td>Evening phase angle, ψ (min)</td>
<td>170</td>
<td>-0.045</td>
<td>0.556</td>
</tr>
<tr>
<td>Morning light intensity (lux)</td>
<td>Exit time (h)</td>
<td>170</td>
<td>0.073</td>
<td>0.342</td>
</tr>
<tr>
<td>Morning light intensity (lux)</td>
<td>Morning phase angle, ψ (min)</td>
<td>170</td>
<td>0.136</td>
<td>0.078</td>
</tr>
<tr>
<td>Evening light intensity (lux)</td>
<td>Entry time (h)</td>
<td>170</td>
<td>0.700</td>
<td>0.001</td>
</tr>
<tr>
<td>Evening light intensity (lux)</td>
<td>Evening phase angle, ψ (min)</td>
<td>170</td>
<td>-0.036</td>
<td>0.640</td>
</tr>
</tbody>
</table>

Figure 2. Sunrise time and exit time of the first bird from the nest (from August 2009 to July 2011). The dotted lines around the average exit time indicate 95% confidence limit.
Discussion

Roosting behavior (exit and entry timings) with reference to environmental cues has been studied in a number of avian species (see introduction section). We report here, for the first time, the roosting behavior of house swift (A. affinis). The species under study is native to Chhattisgarh, India.

Figure 3. Sunset time and entry time of the last bird to the nest (from August 2009 to July 2011). The dotted lines around the average entry time indicate 95% confidence limit.

Sunrise and sunset time

The present study reveals that sunset time is a dominant time cue for roosting behavior, as the annual spread of evening phase angles appears to be the least (1.01 min) and more precise. It has been argued that the sunrise and sunset timings are the leader factors (Michael and Chao, 1973; Zammuto and Franks, 1981) followed by the other environmental factors, such as temperature, wind velocity, and cloud cover. Different roosting activities, such as wake up, exit, and entry timings show diurnal and seasonal variations apropos timings of sunrise and sunset (Mahabal and Vaidya, 1989). In the present investigation, house swift (A. affinis) exited their roost about half an hour before sunrise time and entered in to the roost around 20 minutes after sunset time. Our findings draw support from earlier studies conducted on other swift species (Michael and Chao, 1973; Zammuto and Franks, 1981; Ryan and Collins, 2003). In contrast, house swifts (A. affinis) exhibits a wider phase angle (range: 1.25 to 3.25 hr) between sunrise and exit time (Razack and Naik, 1965). According to Arn-Willi (1960) in case of the Alpine swift (A. melba), Peh (2002) in case of the house crow (C. splendidus) and Reesb (1987) in case of black-billed magpies (P. pica) the timings of exit and entry are diametrically opposite. They exit from their roost after the dawn and return considerably before the dusk. On the other hand, roosting time in higher altitudes is comparatively earlier as reported in the common swift (A. apus) found in Germany and Finland and has been attributed to greater twilight span in that region (Scheer, 1949). In domestic fowl (G. gallus domesticus) the roosting timings have been strongly correlated with the sunrise and sunset timings (Wood-Gush et al., 1978). The entry time has also been shown to have a significantly positive correlation with the sunset time in the house crow (C. splendidus) (Peh, 2002), common myna (A. tristis) and white-vented myna (A. javanicus) (Kang and Yeo, 1993; Gupta and Goel, 1994; Jayson and Mathew, 1995).
Temperature

In the present study, the roosting time of house swift (A. affinis) was found to be significantly influenced by the ambient morning and evening temperature. Comparable findings have been reported in common swift (A. apus) (Koskimies, 1950), house swift (A. affinis) (Razack and Naik, 1965), chimney swift (Chaetura pelagica) (Zammuto and Franks, 1981), white-throated swift (Aeronautes owis) (Ryan and Collins, 2003), Canada goose (Branta canadensis) (Raveling et al., 1972), black-capped chickadees (Poecile atricapillus) (Kessel, 1976), black ducks (A. rubripes) (Brodsky and Weatherhead, 1985), starlings (S. vulgaris) (Jumber, 1956), house crow (C. splendens) (Peh, 2002) and magpies (P. pica) (Reebs, 1986). At lower temperature, the house swift (A. affinis) exited later and entered to the roost earlier. It has been demonstrated that food accessibility decreases in lower temperature; therefore, birds spend most of the time in the nest and reduce their activity (Reebs, 1986).

The availability of arthropods up in the air has been shown to be influenced by the irregularity in temperature (Holm and Edney, 1973; Romoser and Stoffolano, 1994). The favorable range of temperature from 22°C to 38°C and up to 60 m above the ground for exit has been reported for common swifts (A. apus) (Glick, 1939, 1957; Koskimies, 1950). In contrast, there are many avian species, wherein their roosting behavior remains independent of factors, like temperature, rain and blustery weather (Janicke and Chackarov, 2007 for Common ravens, C. corax; Schreiber, 1967 for herring Gull, L. argentatus). Furthermore, while exit time of house crow (C. splendens) was positively associated with the temperature (Peh, 2002); the entry, but not exit time, of the magpies (P. pica) was significantly influenced by the temperature (Reebs, 1986).

![Figure 4. Seasonal variation in exit (a) and entry (b) timings of house swift (A. affinis) during the study period. ANOVA summary: exit time: $F_{2,19} = 87.16$, $P < 0.001$; entry time: $F_{2,19} = 117.02$, $P < 0.001$. Means bearing the same letter are not significantly different from each other at $P < 0.05$ (based on Duncan’s multiple-range test).](image)

Humidity

The exit and entry timings of the house swift (A. affinis) was found to be influenced by humidity. In swifts both visual (rain and clouds) and tangible (wet condition) signals have been shown to influence both roosting and foraging behaviors (Ryan and Collins, 2003). The entry time has been shown to be negatively correlated with humidity in house crow (C. splendens) (Peh, 2002) and chimney swifts (C. pelagica) (Zammuto and Franks, 1981).
Figure 5. Seasonal variation in morning and evening phase angle of exit and entry timings of the first and the last bird, respectively. ANOVA summary: Morning phase angle: $F_{3,191} = 2.26; P = 0.11$; Evening phase angle: $F_{3,191} = 0.40; P = 0.79$). Means bearing the same letter are not significantly different from each other at $P < 0.05$ (based on Duncan’s multiple-range test).

Light intensity

In the present study, the entry time was found to be significantly correlated with the light intensity. Similar relationship has been reported earlier in other species of the swifts, like common swifts (A. apus), Alpine swallows (A. melba), house swifts (A. affinis) and chimney swifts (C. pelagica) (Koskimies, 1950; Church, 1956; Razack and Naik, 1965; Michael and Chao, 1973; Zammuto and Franks, 1981). In addition, such relationship has also been observed in other bird species, such as starlings (S. vulgaris) (Davis, 1955; Jumber, 1956; Davis and Lussenhop, 1970), rooks (C. frugilegus) (Swingland, 1976), magpies (P. pica) (Reebs, 1986) and domestic fowl (G. gallus domesticus) (Kent et al., 1996). The broad spectrum of light intensity has been reported to be required for the exit than entry in chimney swifts (C. pelagica) (Zammuto and Franks, 1981). Michael and Chao (1973) reported that chimney swifts (C. pelagica), entered to the roost at higher light intensities during colder months, whereas they entered at lower light intensities during warmer months. Contradictory findings have been reported in white-throated swifts (A. saxatalis) (Ryan and Collins, 2003).

According to Ryan and Collins (2003) temperature is the foremost zeitgeber for the insect abundance in the air than light intensity, which affects the roosting behavior of white-throated swift (A. saxatali), whereas the flight and foraging are accurately predicted by light intensity. The prominent influencing factors for the roosting time of herring gull (L. argentatus) have been reported to be light intensity, cloud cover and daylight span as compared to temperature and wind characteristics (Schreiber, 1967). The herring gull (L. argentatus) entered to their roost prior to night (Schreiber, 1967). Cloud cover influenced indirectly the roosting time of house crow (C. splendens) on account of decreased light intensity; however, entry time was not significantly associated with light intensity (Peh, 2002). At 1-5 lux, most of the magpies (P. pica) exited from their roost; it implies that the minimum range of light intensity is required for safe flight, whereas the entry to the roost takes place at wide range of light intensity between 24.2-1174.2 lux. These results suggest that higher and variable range of light intensities is required for the entry as compared for the exit (Reebs, 1986).

Season

In the present study, we observed a statistically significant effect of season on exit and entry pattern/roosting behavior of the house swift (A. affinis). Similar observations have been demonstrated for herring gull (L. argentatus) (Schreiber, 1967), the chimney swifts (C. pelagica) (Zammuto and Franks, 1981) and white-throated swifts (A. saxatalis) (Ryan and Collins, 2003).
In an earlier study, it has been demonstrated that the exit of the white-throated swifts (*A. s. saxatalis*) from their roost is influenced by daily variation in the climatic conditions as compared to seasonal changes; whereas entry fluctuates more predictably by season than climatic conditions (Ryan and Collins, 2003). We found that the house swift (*A. affinis*) exited later during winter as compared to monsoon and summer seasons, and entered to the roost significantly earlier during the winter season than monsoon and summer season. This phenomenon could be attributed to temperature-linked dispersal of arthropods that in turn affects foraging length directly and the activity period and roosting behavior indirectly (Koskimies, 1950). The chimney swifts (*C. pelagica*) (Zammuto and Franks, 1981; Ryan and Collins, 2003), house crow (*C. splendens*) (Peh, 2002), rooks (*C. frugilegus*) (Swingland, 1976; Hubalek, 1978), common crow (*C. brachyrhynchos*) (Haase, 1963), Canada geese (*B. canadensis*) (Raveling et al., 1972), captive great tits (*Parus major*) (Dunnett and Hinde, 1953) and starlings (*S. vulgaris*) (Davis and Lussenhop, 1970) exited later and returned earlier in the cloudy and rainy season compared to winter and clear days. In the clear day, common ravens (*C. corax*) entered to their roost later in the evening (Janicke and Chakarov, 2007). According to Reeds (1986), the magpies (*P. pica*) have been shown to exit from their roost later and enter earlier on the cloudy days, cold days, and long days than during the shorter days (winter) and mild days. The parallel results have been reported for wintering black ducks (*A. rubripes*) (Brodsky and Weatherhead, 1984) and black-capped chickadees (*P. atricapillus*) (Kessel, 1976). In winter, white-throated swifts (*A. s. saxatalis*) entered their roost close to or subsequent to sunset, but in spring and summer prior to sunset (Ryan and Collins, 2003). In contrast, the house swift (*A. affinis*) exited from the roost earlier and returned to the roost later; and the longest phase angle was found during the longest activity period in summer. In several species, foggy weather and rainfall have been shown to influence the late exit from the roosts (Koskimies, 1950; Lack and Lack, 1952; Razack and Naik, 1965; Michael and Chao, 1973; Zammuto and Franks, 1981). Early return to the roost in several species of swifts has been attributed to unfavorable conditions, such as smog and rain (Lack and Lack, 1952; Church, 1956; Razack and Naik, 1965; Zammuto and Franks, 1981). Following initiation of cloudburst, common swift (*A. apus*) and chimney swifts (*C. pelagica*) have been observed to return to the roost immediately (Lack and Lack, 1952; Zammuto and Franks, 1981).

Conclusion

We conclude that various environmental factors, viz., sunrise time, sunset time, temperature, humidity and light intensity are likely to produce statistically significant effect on exit and entry timings or roosting behavior of the house swift (*A. affinis*). The sunrise appears to be one of the most dominant time cues for the activity period in house swift (*A. affinis*), especially because entry time was found to be significantly associated with all the independent variables considered in the present study. In addition, the factor ‘season’ has significant modulatory role on roosting behavior. The present study is, however, inadequate to answer the following questions: (1) how the first bird of the colony determines that it is the time to fly out? (2) Is it the same individual that flies out first daily? The findings of the present study may have important bearings on the safety of civil and military flights.

Acknowledgement

This study was supported by the University Grants Commission, New Delhi, through its DRS Special Assistance Program sanctioned in the thrust area, ‘Chronobiology’. Two of us (SK and AS) are obliged to the UGC for granting BSR fellowships. We are thankful to the Head, School of Life Sciences, P. Ravishankar Shukla University, Raipur, for providing us with the facilities to carry out the study. We are grateful to the Malviya Road market committee, Raipur, who cares for the safety of the bird’s colony and for granting permission to carry out the study.

References

Effect of Coke Oven Effluent on Serum Gamma Globulin and A/G Ratio in *Clarias batrachus*

Priti Chandrakar and Aditi Niyogi Poddar
School of Life Sciences, Pt. Ravishankar Shukla University, Raipur – 492010, Chhattisgarh, India

*Corresponding Author: adinpod@gmail.com

[Received 30 March 2014; revised version received 17 April 2014; accepted 17 April 2014]

Abstract. The impact of both short term and long term coke oven effluent released from the Bhilai Steel Plant (BSP) has been studied on *Clarias batrachus* Linn. (1758) with particular reference to A/G ratio and serum gamma globulin. The model animal was given short term exposure in 30% of coke oven effluent for five days and long term exposure was given for six weeks in 0.5% effluent. The A/G ratio and gamma globulin were determined in serum by standard methods. Experimental findings depicted augmentation in A/G ratio and gamma globulin as a result of short term exposure, whereas long term exposure resulted in significantly high A/G ratio. Significant effect of time and group was confirmed in the gamma globulin concentration. This study reveals negative impact of coke oven effluent, released from the BSP, on local fauna.

Keywords: Coke oven effluent, Bhilai Steel Plant, *Clarias batrachus*, A/G ratio, gamma globulin, phenol

Introduction

Massive deteriorations of water qualities have ensued with elapsing time due to the release of effluents from domestic, industrial and agricultural sources. In order to keep a check on the pollution, a large number of toxicants are being identified and their recommended values documented by the United States Environmental Protection Agency (2009).

The Bhilai Steel Plant is an integrated steel plant situated 30 kilometers (west) of Raipur, the capital of the state of Chhattisgarh, India [Latitude:21°13‘N; Longitude:81°23‘E]. The major marketable product is good quality steel produced along with important by products, such as, Coal tar, Naphthalene and Benzol. The metallurgy of iron from its ore requires coke as a fuel and reducing agent in the blast furnace. This coke is converted from Bituminous coal in the coke ovens. The effluent generated in the coke ovens has a strong phenolic odor and contains a high amount of Phenol ranging between 0.378 mg/l to 12.5 mg/l besides the presence of other toxic substances (Guhu, 1990; Sinha, 1999; Bakde and Poddar, 2011; Mishra and Poddar, 2011, 2013a, b). Similarly, high concentrations (11.06 mg/l) of Phenols were also reported near industrial effluent channel outlets (Buikema et al., 1979) and in effluents generated from refineries (Otokunefor and Obiukwu, 2005).

Phenol and phenolic compounds are stressful environmental factors presenting a threat to natural environment and human health due to their lipophilic properties (Hori et al., 2006). They induce genotoxic (Jagetia and Aruna, 1997), carcinogenic (Tsutsui et al., 1997) and immunotoxic effects (Taysse et al., 1995) on fish health, besides reduction in fish weight and fertility (Saha et al., 1999). Polycyclic aromatic hydrocarbons and polychlorinated biphenyls are endocrine disrupters (Kashiyada et al., 2002; Pait and Nelson, 2003; Barse et al., 2006; Martin-Skilton et al., 2006; Tollefsen, 2007) and adversely affect fish metabolism (Gupta et al., 1983; Abdel-Hameid, 1994). Most importantly, Phenol has been listed in the National Recommended Water Quality Criteria (NRWQC) as a priority pollutant with an organoleptic effect criterion of 300µg/l (USEPA, 2009). Hence, it has a unique quality of tainting the taste of fish if present in marine environments at 0.1-1.0 ppm (Kirk and Othmer, 1982; Neff, 2002). Thus, the importance of taking into consideration Phenol intoxication in natural aquatic habitats becomes evident.

Acute exposure to environmental changes results in innate immune response whereas the chronic exposure results in adaptive immune response (Bowden, 2008). Stress leads to alteration in the immunoglobulin level (Varsamous et al., 2006). A/G ratio is the index to find out the relative changes in the composition of serum or plasma (Jacobs et al., 1990). This work is an attempt to ascertain the adverse effects of coke oven effluent of Bhilai Steel Plant on the immune response in the fish, *Clarias batrachus*.

Material and methods

Collection and acclimatization of experimental model

Healthy and apparently disease free catfish (Clarias batrachus) within the range of 230 ± 20 g weight and 30 ± 2 cm length were collected from local fish markets at Raipur, Chhattisgarh and transported to the laboratory alive. They were then acclimatized in dechlorinated tap water for a period of 15 days at 28 ± 1 °C in a glass aquarium of size (4x3 ft) along with aeration throughout. Fish food was provided twice every day.

Collection and analysis of coke oven effluent

The Coke oven effluent was collected from its source near Purena nala, Bilai-3 and brought to the laboratory on the same day. The physico-chemical characteristics, viz., pH, dissolved oxygen (DO), free CO₂, alkalinity, chloride and Phenol were measured on the same day using standard methods for the analysis of natural and treated waste water described by the American Public Health Association (1975).

Experimental design

The experimental design comprised of two types of exposures of the coke oven effluent given to the model fish (Clarias batrachus).

Short term exposure

On the basis of LC50 of the effluent according to Mishra and Poddar (2013a) two sublethal concentrations were prepared, viz., (A) 30% effluent containing 2.04 mg/l phenol and (B) 0.5% effluent with 0.035 mg/l phenol after dilution with dechlorinated tap water. Six live and healthy previously acclimatized Clarias batrachus of same size range and weight were divided into two groups consisting of three fish each. One of the groups was exposed to dechlorinated tap water which acted as control and the other was exposed to 30% coke oven effluent for 6 days in 20 liters glass aquaria. Blood samples were collected from fishes of each group by severing the caudal peduncle on the sixth day and serum was isolated for estimations of A/G Ratio (Reinhold, 1953) and Gamma globulin (Friedman, 1958). The assays were carried out on the same day in triplicates.

Table 1. Physicochemical parameters of the coke oven effluent vis-à-vis National Recommended Water Quality Criteria (USEPA, 2009).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values before exposure</th>
<th>NRWQC (USEPA, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short term</td>
<td>Long term</td>
</tr>
<tr>
<td>pH</td>
<td>8.02</td>
<td>8.15</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>6.29</td>
<td>6.25</td>
</tr>
<tr>
<td>free CO₂ (mg/l)</td>
<td>4.4</td>
<td>112.2</td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>69.58</td>
<td>58.22</td>
</tr>
<tr>
<td>Alkalinity (mg/l)</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Phenol (mg/l)</td>
<td>6.8</td>
<td>7.1</td>
</tr>
</tbody>
</table>

*priority pollutant list; **OEC = Organoleptic Effect Criterion (USEPA, Goldbook, 1986); CMC = Criterion Maximum Concentration; CCC = Criterion Continuous Concentration

Long term exposure

Twenty-four live and healthy, previously acclimatized Clarias batrachus of same size range and weight were divided into two groups consisting of twelve fishes each. One of the groups was exposed to dechlorinated tap water acting as control and other to 0.5% effluent for six weeks. Blood was collected from two fishes belonging to each group at weekly intervals and serum A/G Ratio (Reinhold, 1953) and Gamma globulin (Friedman, 1958) were measured on the same day in triplicates.

Statistical analysis: Data collected were analyzed using MS Excel ToolPak (version, 2007) and COSTAT (CoHort software; version 4.02, ©).

Results

National Recommended Water Quality Criteria for Organoleptic effects (OEC) (USEPA, 2009) and the results of analysis of the physicochemical parameters of the coke oven effluent channel of Bhilai Steel Plant vis-à-vis NRWQC (USEPA, 2009)
are depicted in Table 1. The levels of Phenol obtained before short (6.8 mg/l) and long term exposures (7.1 mg/l) were observed to be far above the NRWQC according to USEPA (2009).

Short term exposure

A percent augmentation of 104.19 was observed in serum A/G ratio of test samples exposed to 30 % coke oven effluent for 6 days with mean values being 6.34 in test as compared from control (3.10). A percent augmentation of 9.12 was observed in serum gamma globulin of test samples being 5.62mg/ml as compared from control (5.15 mg/ml). From the results of one-way ANOVA a significant effect of factor group (Control and Test) was validated in AG Ratio (Table 2(a)) and gamma globulin (Table 2(b)) on short-term exposure (six days in 30% effluent). The mean AG ratio was found to be significantly higher in ‘Test group’ as compared to ‘Control group’ (Figure 1).

Long term exposure

Results of long term exposure to the 0.5% of coke oven effluent resulted in a very high percent hike in A/G ratio (Figure 2) of test samples as compared from control was observed in the first week (109.54) which declined to 98.09, 63.3, 49.3, 64.53 and 62.6 percent hikes in the following weeks. On the contrary, percent hike in serum gamma globulin (Figure 3) increased gradually from 2.92 in week 1 to 3.11, 4.66, 4.47, 5.06 and 4.84 in the following weeks. From two-way ANOVA the effect of factor group was also found to be significant on long term exposure of the fish *Clarias batrachus*. The ‘Test group’ has high A/G Ratio than the counterpart ‘Control group’. The effect of factor time was found to be insignificant in mean A/G ratio (Table 2(c)).

Significant effect of factor time and group was validated in Gamma globulin concentration of *Clarias batrachus* (Table 2 (d)). From Duncan’s Multiple Range Test the concentration of Gamma globulin was found to be the highest on the sixth week than the first and the second week (Table 2 (e)). The concentration of Gamma globulin was significantly higher in ‘Test’ than ‘Control’ (Figure 3). The interaction effect of factors time and group was also significant which means that both factors concentration and duration are associated in Gamma globulin concentration in *Clarias batrachus* (Table 2 (d)).

![Figure 1](image-url)

Figure 1. Mean values for AG Ratio and Serum Gamma Globulin concentration in control and test groups in response to short-term exposure to coke oven effluent of Bhilai Steel Plant.
Discussion

Increased industrial disposal of effluents to the water bodies introduces large number of toxicants to the environment whose concentration increases with time and directly or indirectly affects the health of organisms. Phenol is also one of the harmful toxicant which has hazardous impact on the health of organism. The toxicity symptoms of phenol are anemia, anorexia, in coordination, weakness and dyspepsia. Besides, centrilobular necrosis and hemorrhage of the liver have been found at post mortem (Clarke and Clarke, 1979). A study on African catfish shows that they are more tolerant to Phenol toxicity as the LC50 is 35mg/l which however produces deleterious effect on its various organs (Ibrahim, 2012) Also exposure to Phenol leads to impaired specific immune response and reduced disease resistance (Hamid et al., 2007).

![Figure 2. Left] Percent change in A/G Ratio of Clarias batrachus in response to 0.5% coke oven effluent (Long Term Exposure)

![Figure 3. Right] Percent change in Serum Gamma Globulin levels of Clarias batrachus in response to 0.5% coke oven effluent (Long Term Exposure)

The data obtained on A/G Ratio from present study as a result of short term and long term exposure agree with Bly et al. (1997) that immune functions seem to be suppressed by artificial environmental stress. Declination of A/G Ratio indicates dysfunction of the liver. Exposure to stressors, make the gills leaky to water and ions, that often results in osmo-regulatory imbalance (Mazeoud et al., 1977). Stress due to pollutants resulting in haemodilution may also be the cause of the decrease in A/G Ratio (Jacob et al., 1990).

Earlier workers have reported toxic effects of the coke oven effluent of Bhilai Steel Plant on the various morphological and physiological parameters of fishes. The lethal concentration 50 (LC50) for this effluent by Probit analysis was observed to be 5.16 mg/l for Channa punctatus (Mishra and Poddar, 2013a) with significant effects on the hematological indices (TEC, TLC and % Hb) in response to short and long term exposures to its various sublethal concentrations (Mishra and Poddar, 2011, 2013b). Bakde and Poddar (2011) reported depletion in the levels of alkaline and acid phosphatases in gills, liver and gonads of Cyprinus carpio in response to 10%, 20% and 30% effluent. In response to similar concentrations, elevations in the ALAT (Alanine amino transferase) and ASAT (Aspartate amino transferase) activities in first week and declines in the third week onwards were also reported by Khewar and Poddar (2013) in Channa punctatus.
Table 2a. Summary of ANOVA showing the effect of coke oven effluent of Bhilai Steel Plant on A/G Ratio of Clarias batrachus (Concentration = 30%; Duration of Exposure = 6 days).

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>48.02</td>
<td>1</td>
<td>48.02</td>
<td>13.37</td>
<td>0.002</td>
</tr>
<tr>
<td>Error</td>
<td>57.48</td>
<td>8</td>
<td>16.00</td>
<td>03.59</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105.50</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2b. Summary of ANOVA showing the effect of coke oven effluent of BSP on Serum Gamma Globulin of Clarias batrachus (Concentration = 30%; Duration of Exposure = 6 days).

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>196</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>8E-04</td>
<td>16</td>
<td>5E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.01</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2c. Summary of ANOVA showing the effect of coke oven effluent of Bhilai Steel Plant on A/G Ratio of Clarias batrachus (Concentration = 0.5%; Duration of Exposure = 6 weeks).

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>9.87</td>
<td>5</td>
<td>1.97</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>88.00</td>
<td>1</td>
<td>88.00</td>
<td>69.02</td>
<td>0.000</td>
</tr>
<tr>
<td>Time x Group</td>
<td>7.80</td>
<td>5</td>
<td>1.56</td>
<td>1.22</td>
<td>0.309</td>
</tr>
<tr>
<td>Error</td>
<td>76.5</td>
<td>60</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>182.17</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2d. Summary of ANOVA showing the effect of coke oven effluent of Bhilai Steel Plant on Serum Gamma Globulin of Clarias batrachus (Concentration = 0.5%; Duration of Exposure = 6 weeks).

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>5.74</td>
<td>5</td>
<td>1.15</td>
<td>4.64</td>
<td>0.001</td>
</tr>
<tr>
<td>Group</td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>368.60</td>
<td>0.000</td>
</tr>
<tr>
<td>Time x Group</td>
<td>4.63</td>
<td>5</td>
<td>9.25</td>
<td>3.74</td>
<td>0.005</td>
</tr>
<tr>
<td>Error</td>
<td>0.00</td>
<td>60</td>
<td>2.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.01</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2e. AG Ratio and Serum Gamma Globulin concentration (mg/ml) in Clarias batrachus as function of exposure to coke oven effluent (Duncan's multiple range test).

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Factor - Time</th>
<th>AG Ratio (M ± SE)</th>
<th>Gamma Globulin (M ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Week 1</td>
<td>4.68 ± 0.70*a</td>
<td>5.21 ± 0.02*a</td>
</tr>
<tr>
<td>2</td>
<td>Week 2</td>
<td>4.29 ± 0.68*a</td>
<td>5.23 ± 0.02*a</td>
</tr>
<tr>
<td>3</td>
<td>Week 3</td>
<td>3.98 ± 0.35*b</td>
<td>5.27 ± 0.03*b</td>
</tr>
<tr>
<td>4</td>
<td>Week 4</td>
<td>3.66 ± 0.30*b</td>
<td>5.26 ± 0.04*b</td>
</tr>
<tr>
<td>5</td>
<td>Week 5</td>
<td>3.72 ± 0.31*b</td>
<td>5.27 ± 0.03*b</td>
</tr>
<tr>
<td>6</td>
<td>Week 6</td>
<td>3.69 ± 0.30*b</td>
<td>5.29 ± 0.04*b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Factor - Group</th>
<th>AG Ratio (M ± SE)</th>
<th>Gamma Globulin (M ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>2.9 ± 0.08*a</td>
<td>5.14 ± 0.00*a</td>
</tr>
<tr>
<td>2</td>
<td>Test</td>
<td>5.1 ± 0.26*b</td>
<td>5.35 ± 0.00*b</td>
</tr>
</tbody>
</table>

Means having similar alphabets, as superscripts, are not statistically significant from each other at \(p < 0.05 \) (Based on Duncan's multiple-range test).
This study further adds information that this effluent possesses the potential for altering the immune response in fishes. As immune response is the result of interaction of innate and adaptive immune system of an organism, thus, it would be reasonable to conclude that acute or chronic exposures to such factors that may lead to stress can predispose fish to infectious diseases. The above finding suggests that the presence of Phenol in aquatic habitats than the recommended value in coke oven effluent of Bhilai Steel Plant has an ability to affect the immune response of *Clarias batrachus* in terms of A/G Ratio and Gamma globulin even in low concentrations. This indicates that the effluent which finally reaches the river Kharoon, although in diluted condition will have deleterious consequences on aquatic organisms living therein.

Acknowledgement

We acknowledge our sincere thanks to Head, School of Studies in Life Sciences, Pt. Ravishankar Shukla University for providing us with the laboratory facilities throughout the work. We are also thankful to Pt. Ravishankar Shukla University for granting the fellowship to one of us (PC).

References

Biological Rhythm Research

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/nbrr20

Day length and evening temperature predict circannual variation in activity duration of the colony of the Indian cliff swallow, Hirundo fluvicola

Arati Singh, Shrutika Kankariya, Atanu Kumar Pati & Arti Parganiha

School of Life Sciences, Pt. Ravishankar Shukla University, Raipur 492010, India

Accepted author version posted online: 28 Jul 2014. Published online: 03 Sep 2014.

To cite this article: Arati Singh, Shrutika Kankariya, Atanu Kumar Pati & Arti Parganiha (2014): Day length and evening temperature predict circannual variation in activity duration of the colony of the Indian cliff swallow, Hirundo fluvicola, Biological Rhythm Research, DOI: 10.1080/09291016.2014.948301

To link to this article: http://dx.doi.org/10.1080/09291016.2014.948301

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Day length and evening temperature predict circannual variation in activity duration of the colony of the Indian cliff swallow, *Hirundo fluvicola*

Arati Singh, Shrutika Kankariya, Atanu Kumar Pati and Arti Parganiha*

School of Life Sciences, Pt. Ravishankar Shukla University, Raipur 492010, India

(Received 25 June 2014; accepted 24 July 2014)

In avian species, circannual rhythms, in a number of biological variables, including locomotor activity, have been studied under both laboratory and natural environmental conditions. However, information on circannual rhythm in daily activity duration of Indian cliff swallow (*Hirundo fluvicola*) is not available. It is a communal mud nesting, non-migratory species and inhabits low under arch bridges. Although it figures in the IUCN Red List under the least concerned category, it is important to study its behavioral ecology that may be of utmost importance from conservation standpoint. In the present investigation, we examined the circannual rhythm in daily activity duration in this species at a communal roosting site under Kharoon river bridge on the Raipur–Bhilai highway (21°15′07.54″N; 81°32′30.65″E), Raipur, India, for eight consecutive days, every month from August 2009 to October 2011. On each study day, observations were made in two sessions, morning and evening. We monitored and recorded emergence time of the first bird from the nest in the morning and entry time of the last bird to the nest in the evening. We also recorded the ambient temperature and humidity of the study site simultaneously. Average daily activity duration (the time difference between the first bird’s emergence time and the last bird’s entry time from/to the nest, respectively) was computed for each month. A significant circannual rhythm in activity duration was validated. The peak of activity rhythm occurred on 22nd June with a spread between 19th June and 25th June. The activity duration was the shortest in winter and the longest in summer. The daily activity duration was positively correlated to the day length, sunset time, and morning and evening temperatures; whereas negatively correlated with the sunrise time, and morning and evening humidity. The multiple linear regression models suggest that day length alone explains 96% of the total variance in activity duration, whereas only 0.5% variance was attributable to evening temperature. We conclude that the day length is the strongest predictor of circannual variation in daily activity duration of the colony of Indian cliff swallow; whereas the evening temperature has very little effect. Further, we recommend that comparable studies under natural conditions might be very helpful to explore the effect of environmental cues on other intriguing behavioral decisions made by this and other avian species.

Keywords: *Hirundo fluvicola*; activity duration; circannual rhythm; day length; environmental factors; season

Introduction

A biological rhythm with an endogenous period close to a year is called a “circannual rhythm” and is governed by a purported circannual clock that regulates physiological
and behavioral events along with longitudinal annual time scale (Gwinner 1996; Johnsson 2008). The endogenous circannual clock ensures a stable phase relationship between internal and external oscillations (Saunders 2002; Dunlap et al. 2004; Aparicio et al. 2014).

Birds, being the most noticeable group, are often used as an indicator of variations in the environment. Their abilities to anticipate periodic environmental cues are well recognized (Jonzén et al. 2007; McNamara & Houston 2008; Wingfield et al. 2008). Birds adjust their daily activities receiving inputs from various external stimuli, such as day length, light intensity, temperature, humidity, availability of food, and predators. Apart from day length and light intensity (Aschoff & Wever 1962; Gwinner 1975), the daily activity duration in birds may also depend upon number of other factors, namely weather conditions (Lopez-Calleja & Bozinovic 2003; Tieleman et al. 2003), season (Martínez 2000; Dixit & Singh 2011; Goymann et al. 2012), habitat type (Eberhardt et al. 1989; Morton et al. 1989; Rave & Baldassarre 1989), gender (Arshad & Zakaria 2009), age (Beveridge & Deag 1987; Sullivan 1988), and communal hierarchy (Pulliam 1973; Caraco 1979). Notwithstanding our knowledge about the role of these factors, the temporal pattern in daily activity duration differs among species, because we have very little information about the role of non-photic cues in the variability in the seasonal responses from one species to another (Gwinner & Scheuerlein 1998; Scheuerlein & Gwinner 2002). It is presumed that non-photic cues might be working as complementary and modifying factors (Hau et al. 2004; Helm et al. 2006) for the day length and light intensity induced harmonization of seasonal periodicities.

Information is scanty on the behavioral ecology of this species that figures in IUCN Red List under the least concerned category. Notwithstanding its status, it is important to study its behavioral ecology that may be of utmost importance from conservation standpoint.

In animals, the locomotor activity has been identified as one of the important characteristics to reveal the seasonal variability in phase association between activity (internal) and time cues (external) in both captive and free living conditions (Marimuthu 1984). For the purpose of documentation, the initiation and end of roosting time in birds can be referred as activity time that can be applied to study the various parameters of endogenous rhythm (Chandrashekaran et al. 1983). Measuring the energy expenditure and daily activities of birds in the natural environment is important in quantitative assessment and understanding of varied characteristics; for instance, approach for feeding, struggle for resources, or contribution by the parents (Kacelnick & Houston 1984; Goldstein 1984). It has been conjectured that seasonal cycle of birds with respect to reproduction when harmonized with temperature, precipitation and amount of food will have better survival chances than those species that organize their seasonal cycle with an inflexible zeitgeber, like day length (Carey 2009).

How do the environmental factors in the subtropical region that usually act as zeitgebers to harmonize the intrinsic cycles to real time in Indian cliff swallow is unclear? Our purpose was to investigate how day length and ambient environmental variables interact in a subtropical environment to act as determinants of activity duration in this species along the longitudinal temporal scales of about two years and over different seasons. Knowledge of activity patterns in this species will help us to understand avian ecology, to establish suitable survey methodology, and eventually to develop various methods to manage this endemic species. These data may also prove useful for utilizing the qualitative ideas to a quantitative framework for protection of biodiversity, unraveling various aspects of the ecology and conservation biology of this species.
Therefore, in the present investigation, we examined the circannual rhythm in daily activity duration in Indian cliff swallow at a communal roosting site.

Materials and methods

Nesting site

The nesting site of a huge colony of this species was located underneath the arches of a discarded bridge in the left flank of the currently used Kharoon river bridge on the Raipur–Bhilai highway (climate – tropical; location 21°15'07.54"N; 81°32'30.65"E), Chhattisgarh, India (Figure 1(a) and (b)). The discarded bridge is about 100 years old with an average height of about six meters. The height of the bridge from the ground level of the river bed was measured using Ultrasonic Distance Meter, W/LASER Point (CB–1005). The depth of the water body below the bridge always varies between 1.5 and 2.00 meters. However, during rainy season, water level increases, and if heavy rain persists, entire nesting colony gets washed away due to flood in the river. The nesting site is surrounded by agricultural fields and patches of green forest.

Data sampling

The study on the activity duration was conducted along a longitudinal time scale from August 2009 to October 2011. The exit time of the first bird and entry time of the last bird from/to the roosting site were monitored for eight consecutive days, every month, for over a period of twenty-seven months, excluding three months (August 2010, October 2010, and July 2011) and four days in July 2010, as the nests got washed off due to flood in the river. During the study period, we visited the nesting site every month in the morning and evening before the bird emerged and entered from/to their nest. The observations were made in the morning at least one hour before the expected exit time of the first bird, and the session was completed half an hour after the last bird emerged from the nest. Similarly, in the evening, observations were made one hour before the expected entry time of the last bird and terminated half an hour after the last bird entered the nest. The time of exit of the first bird from the nest was regarded as the initiation of activity time and entry of the last bird to the nest as the termination of activity time of the colony. The time duration between the initiation (exit of the first bird) and end of activity (entry of the last bird) was termed as “activity duration” and

Figure 1. (Colour online) (a) A colonial nesting site of Indian cliff swallow, Hirundo fluvicola, located under one of the arches of the bridge; (b) a closer view of the nests and the birds.
was expressed in hours. All observations for activity duration were carried out safely from a vantage point just above the arch, where the maximum number of communal nests was located. The annual time scale was demarcated into three seasons, namely rainy (monsoon), winter, and summer, in order to ascertain the effects of the factor, “season” on the duration of activity of the colony.

Environmental variables

Information about sunrise, sunset, and day length was obtained from the Raipur Meteorological Department. In addition, temperature and humidity were recorded in the morning and evening at the nesting site during the entire period of the study. The temperature and humidity were measured using a digital thermo-hygrometer (Pacer® TH 402). The descriptive statistics depicting averages and range of the environmental variables along the longitudinal time scale is illustrated in Table 1.

Statistical analyses

The data for activity duration were computed for each month and were subjected to Cosinor rhythmometry (Nelson et al. 1979; Gupta & Pati 1992) for validation of circannual rhythm. The circannual rhythm was characterized by three parameters, such as Mesor (\(M \), rhythm-adjusted mean), the amplitude (\(A \), half of the difference between minimum and maximum in the fitted cosine function), and the peak or acrophase (\(\Phi \), time of maximum in the fitted cosine function, with local midnight of December 22 as \(\Phi \) reference). Data were also pooled separately into three different seasons, namely rainy (July to October), winter (November to February), and summer (March to June) for further comparison. One-way analysis of variance (ANOVA), followed by the post hoc Duncan’s multiple-range test, was applied to determine the differences in activity duration as function of season. Pearson’s \(r \) was computed to reveal relationship between the activity duration (dependent variable) and several independent variables, such as day length, sunrise time, sunset time, morning/evening temperature, and morning/evening humidity. Stepwise multiple linear regression (MLR) analysis was carried out to identify the most significant predictor of the activity duration. To ensure that there are no missing data in different sets of time series, data belonging to the first three months and

<table>
<thead>
<tr>
<th>Exit time</th>
<th>Mean ± SE</th>
<th>Range</th>
<th>Entry time</th>
<th>Mean ± SE</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental variable</td>
<td></td>
<td></td>
<td>Environmental variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunrise time (h)</td>
<td>6.02 ± 0.04</td>
<td>5.37–6.72</td>
<td>Sunset time (h)</td>
<td>18.09 ± 0.04</td>
<td>17.33–18.82</td>
</tr>
<tr>
<td>Phase angle (min)*</td>
<td>22.55 ± 0.45</td>
<td>3.00–36.00</td>
<td>Phase angle (min)*</td>
<td>−30.96 ± 0.57</td>
<td>−54.00–17.00</td>
</tr>
<tr>
<td>Morning temperature (°C)</td>
<td>21.03 ± 0.48</td>
<td>8.20–31.30</td>
<td>Evening temperature (°C)</td>
<td>27.99 ± 0.39</td>
<td>18.00–40.50</td>
</tr>
<tr>
<td>Morning humidity (%)</td>
<td>81.16 ± 1.04</td>
<td>42.00–99.00</td>
<td>Evening humidity (%)</td>
<td>60.90 ± 1.70</td>
<td>11.00–98.00</td>
</tr>
</tbody>
</table>

*Difference between sunrise time/sunset time and exit of the first bird/entry of the last bird, respectively.
four days in July 2010 were excluded from correlation and MLR analyses. All statistical
analyses, except Cosinor rhythmometry, were performed using SPSS for Windows.

Results

Emergence activity

The time of emergence of the first bird was measured as the key indicator of the onset
of activity for the entire colony. Initially, emergence of birds takes place either as a sin-
gle individual or as small flocks about half an hour before sunrise over the seasons (Table 1). About 3–5 min after the initial emergence, flocks were apparently noticed, which varied in size between 5 and 15 individuals. At the peak period of emergence, the flight occurred in series of separate flocks subsequently following each other at short
intervals. Thereafter, the emergence of individuals slowed down, and gradually a small
number of single individuals appeared intermittently till the dawn.

Entrance activity

It was difficult to monitor the onset of return flight precisely, because birds displayed
both inward and outward flights periodically throughout twilight period. Approximately,
half an hour before sunset, their activity above the roosting site steadily increased and
they exhibited numerous circling flights at an altitude of few meters. Entry flights were
characterized by appearance of few birds, which increased progressively to small flocks
and attain their peak at pre-dusk. The time at which the last bird arrived to the roost
was regarded as to imply the end of activity of the entire colony and was about half an
hour after sunset over the seasons (Table 1).

Circannual rhythm in activity duration

A statistically significant ($p < 0.001$) circannual rhythm ($t = 12$ months) in the activity
duration was validated. The peak was noticed on 22 June with a spread ranging between
19 June and 24 June (Figure 2). The circannual rhythm characteristics for activity dura-
tion are shown in the legend to Figure 2.

Effect of season on activity duration

A statistically significant effect of season on activity duration was obtained (ANOVA:
$F_{2,185} = 294.65; p < 0.001$). Result of Duncan’s multiple-range test indicated that the
duration of activity was the smallest in winter and was the maximum in summer
(Figure 3).

Relationship of activity duration with independent variables

Pearson’s correlation analyses revealed that activity duration exhibited positive relation-
ship with day length, sunset time, morning temperature, and evening temperature (all at
$p < 0.001$) (Table 2). A negative relationship between activity duration and sunrise time
or morning humidity (both at $p < 0.001$) was discerned (Table 2). However, no relation-
ship was found between activity duration and evening humidity.
Predictors of circannual rhythm in activity duration

Results of stepwise MLR analysis revealed that the day length contributed to this model to the tune of 96.0% (refer Model 1 in Table 3). In the model 2, that includes both day length and evening temperature, the overall contribution was 96.5% (Table 3).

Discussion

The peak of the circannual rhythm in activity duration was detected in the last week of June. Why do they forage for a longer period in June – the period with soaring temperature? There are several possible explanations. Firstly, June is the month that precedes...
the occurrence of monsoon in Chhattisgarh, when insects are abundantly available. Secondly, the birds attempt to accumulate more energy prior to the period when they are expected to construct/reconstruct nests, and to get ready for egg laying and parental care. Thirdly, it could be an expression of endogenous circannual rhythm that has been evolved to guarantee maximum reproductive fitness to the species. In this study, none of these possibilities have been examined experimentally. Nonetheless, we surmise that since the bird under investigation is insectivorous, probably it synchronizes its expected egg laying time with the onset of monsoon, when insects are plenty. Long ago, Lack (1950) was the first to propose that the birds breed at the appropriate time along the annual time scale, when there is plenty of food in its neighborhood, and the ambient temperature is optimum. It was later supported by Berthold (2001), who alleged that birds make physiological and behavioral adjustments to ensure that breeding occurs at the most appropriate period of the year. The availability of food may also act as a temporal cue, independent of the day length (Hahn et al. 2005). Normally, in tropical regions, the onset of monsoon is closely associated with the abundance of insects (Immelmann 1971). It has been observed that a predictable synchronizer for circannual rhythm may vary as function of species and in some cases as function of geographic regions (Bradshaw & Holzapfel 2007; Newton 2008; Foster & Kreitzman 2009). Furthermore, the synchronizer may also be different for different populations within the same species (Scheuerlein & Gwinner 2002; Carey 2009). In many species of birds, especially the long day breeders those inhabit high latitudes, the day length and an endogenous rhythm of photosensitivity together work as determinant of the phases of annual cycles of reproduction (Helm et al. 2009).

When duration of activity was viewed apropos of the major seasonal compartments, it was found to be the shortest in winter, the longest in summer, and was intermediate

Table 2. Summary of correlation coefficients (r) between independent variables and activity duration (dependent variable).

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>n</th>
<th>R^2</th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day length</td>
<td>164</td>
<td>0.960</td>
<td>0.980</td>
<td><0.001</td>
</tr>
<tr>
<td>Sunrise time</td>
<td>164</td>
<td>0.888</td>
<td>−0.942</td>
<td><0.001</td>
</tr>
<tr>
<td>Sunset time</td>
<td>164</td>
<td>0.850</td>
<td>0.922</td>
<td><0.001</td>
</tr>
<tr>
<td>Morning temperature</td>
<td>164</td>
<td>0.694</td>
<td>0.833</td>
<td><0.001</td>
</tr>
<tr>
<td>Evening temperature</td>
<td>164</td>
<td>0.535</td>
<td>0.731</td>
<td><0.001</td>
</tr>
<tr>
<td>Morning humidity</td>
<td>164</td>
<td>0.115</td>
<td>−0.340</td>
<td><0.001</td>
</tr>
<tr>
<td>Evening humidity</td>
<td>164</td>
<td>0.006</td>
<td>−0.075</td>
<td>0.343</td>
</tr>
</tbody>
</table>

Table 3. Results from stepwise MLR analyses examining the effects of sunrise time, sunset time, day length, morning temperature, evening temperature, morning humidity, and evening humidity on activity duration (dependent variable).

<table>
<thead>
<tr>
<th>Model</th>
<th>r</th>
<th>R^2</th>
<th>B</th>
<th>SE</th>
<th>F-ratio</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1a</td>
<td>0.980</td>
<td>0.960</td>
<td>1.000</td>
<td>0.016</td>
<td>3848.73</td>
<td>1,162</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 2b</td>
<td>0.982</td>
<td>0.965</td>
<td>1.204</td>
<td>0.194</td>
<td>2237.12</td>
<td>1,161</td>
<td><0.001</td>
</tr>
</tbody>
</table>

aDay length.
bDay length, Evening temperature.
Note: SE – Standard error; df – Degrees of freedom.
in rainy season. It has been established since very long that day length (photoperiod) influences seasonal timing of reproduction (Rowan 1925; Thapliyal 1978; Dawson et al. 2001). However, there are limited studies to account for interannual variation (Caro et al. 2013). The presence of interannual variation proves the point that the day length is not the only factor that defines seasonality in many physiological and behavioral variables. The phenomenon of seasonality can be defined by two important features, namely the amplitude of the seasonal variations and the accuracy with which these variations take place every year (Wingfield et al. 1992; Visser et al. 2010). Most of the species have been evolved to stay in sync with the seasonal variability in order to enhance their fitness for survival (Hau 2001; Helm et al. 2009). The seasonality is a complex phenomenon. It is not the changes in day length alone; rather, alterations in several other factors; for instance, temperature, humidity, precipitation, and foraging material, in addition to day length along with the annual time scale constitute seasonality. The physiological and behavioral output in birds varies dramatically as function of season. In few species, the activity declines at the advent of hotter period (Engel et al. 1992; Janicke & Chakarov 2007), while in others the activity increases considerably (Peh 2002; Everding & Jones 2006). This species belongs to the latter type as the foraging period of its colony was longer in the summer months characterized by long day length and high temperature.

A positive linear regression curve was obtained when the activity period was plotted in relation to the day length. In day, active birds, both in nature and in captivity, where there was large fluctuation in day length, activity period becomes independent of the day length. An S-curved relationship has been reported for those species when daily activity period was plotted against photoperiod (Aschoff 1969; Aschoff et al. 1970; Daan & Aschoff 1975). However, in tropical regions, an S-curved relationship has not been reported. The best example is the present study, wherein a positive relationship between day length and activity duration has been discerned. In tropical and subtropical regions, annual variation in day length is the least (Pinet et al. 2011). Therefore, many researchers are of the opinion that probably photoperiod is of little use in the governance of seasonal rhythmicity in metabolic and reproductive behavior (Immelmann 1971). However, this hypothesis is not tenable. The present study reveals a direct positive relationship between day length and duration of activity along the longitudinal time scale. In equatorial birds, the annual changes in the timings of sunrise, sunset, and the day length act as potential zeitgeber for circannual rhythms (Goymann et al. 2012). It has been postulated that at lower latitudes, birds rely upon additional cues to predict their breeding, metabolic, and behavioral activities (Wingfield et al. 1992).

In many avian species, the length of daily activity has been shown to have a relationship with ambient temperature (Inouye et al. 2000; Dunn 2004; Salvante et al. 2010; Singh et al. 2012) and relative humidity (Peh 2002; Gordo 2006; Verma 2010). In Otis tarda (Martínez 2000), Brachyramphus marmoratus (Naslund & O’Donnell 1995), and Junco phaeonotus (Weathers & Sullivan 1993), the length of activity decreases during winter months. However, in Sturnus vulgaris, the activity duration remains unaffected by the ambient temperature (Eiserer & Thompson 1989). The daily activity of Psittacids inhabiting Amazonian forest has been shown to exhibit bimodal activity; the birds remain less active during the hotter part of the day (Roth 1984). It has been shown that temperature has a link with the availability of insects, and therefore many insectivorous species modulate their activity period accordingly (Racey & Swift 1985). In the present study, the activity duration was found to be positively correlated with the morning and evening temperatures.
The relative humidity also influences both the duration and intensity of activity. Normally, high humidity has been linked with the reduced activity in Progne subis (Finlay 1976), Chaetura pelagica (Zammuto & Franks 1981), and Corvus splendens (Peh 2002). Results of the study corroborate with the above findings. We observed a negative correlation between the morning humidity and activity duration in this species.

Although correlation analyses, performed in the present study, explain circannual rhythm in activity duration attributed to several of the tested independent variables, it is not clear how strongly they act as predictors of the rhythm. The results that emerged from stepwise MLR analyses helped us to subtract the role of many independent variables, excluding day length and evening temperature, as predictors of the rhythmic phenomenon. The MLR models suggest that day length alone explains 96% of the total variance in activity duration, whereas only 0.5% variance was attributable to evening temperature. The findings of this study establish that the day length is the strongest predictor of circannual variation in activity duration. Further, the findings of this study will augment our knowledge on the biological consequences of climatic transformation on the activity duration of the bird. Comparable studies under natural conditions might be very helpful to explore the effect of environmental cues on other intriguing behavioral decisions made by this and other avian species.

Acknowledgements
This research was funded by the University Grants Commission, New Delhi, through its DRS Special Assistance Program sanctioned in the thrust area, “Chronobiology” (Sanction No. F.3-2/2010 Phase-II). We are thankful to the UGC for granting BSR fellowships to AS and SK. We are also thankful to residents of the village near our study site in assisting and providing facilities to conduct our research. Authors of this manuscript do not have any financial or competing interests to declare.

References
Beveridge FM, Deag JM. 1987. The effects of sex, temperature and companions on looking-up and feeding in single and mixed species flocks of house sparrows (Passer domesticus), chaffinches (Fringilla coelebs) and starlings (Sturnus vulgaris). Behaviour. 100:303–320.

Papers presented in Symposia/Conferences

A. International Conference

B. National Conference

5. **Kankariya S**, Singh A, Parganiha A and Pati AK (2013). Different components of activity rhythm in house swift, *Apus affinis* may vary as function of day length. II National
Conference on Recent Advances in Biological Sciences. November 25-27, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur (C.G.), p. 54.

Workshop/Seminar attended

2. National Conference on Advances in Biological Sciences, held at SoS in Life Sciences, Pt. RSU, Raipur, November 5-7, 2011.
3. Pre conference Capacity Building Workshops, held at Anaikatti P.O., Coimbatore, Tamil Nadu, India, November 19, 2011.
5. Participated in the National Workshop on Chronobiology as a resource person and conducted hands-on-training of lab programs for the participants.

Fellowships

- UGC-BSR JRF, New Delhi for the academic session 2011 to 2013.
- UGC-BSR SRF, New Delhi for the academic session 2013 to till date.

Awards

Travel grants

Travel grant supported by CCOST and the Pt. Ravishankar Shukla University to present paper containing results of my thesis in the International Ornithological Congress of Southeast Asia. November 27-29, Phuket, Thailand.